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"ABSTRACT

It is shown that Kalman filtering may be applied to the radar track-
while-scan problem. No attempt is made to rigorously derive the Kalman
equations, but the equations are related to more familiar ideas.

It is demonstrated ,hat the least squares caa equations constitute
a special case of the Kalman filter. The approach uzed, however, does
not require a constant data rate or constant measurement accuracy, meaning
that information from various sensors (including links) nay be used.
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INTRODUCTION

I. This report is intended to be the first of a series resulting from a study on
the g.neral subjects of target tracking and association. The purpose of the study
is to prodi, .e a generalised package, a subset of which would be chosen for any
particula,. system with any particular combination of sensors. Alternatively, the
general:;sed package could be used as a standard with which to compare simplified
proces .es.

2. The aim of the first phase of the work is to produce a generalised tracking
system capable of using elevation and doppler information, as well as having a
predictable performance against manoeuvring vehicles. Because this present work
does not include any turn handling capabilities, it is not considered a viable
process on its own, although some people have used such a method on its own with
limited success in other applications.

3. Many of the ideas presented may be expressed in a considerably simpler way by
using some matrix theorems. This has been avoided since the author assumes very
little knowledge of matrix algebra on the part of the reader; one purpose of the
report being to indicate the benefits of this approach.

4. This report is thus concerned with deriving equations of motion of tracks from
information from imperfect sensors, and minimising the noise on these tracks. This
report considers only two dimensional applications.

S. It is shown how information from a one-dimensional sensor may be incorporated.

WHY USE A COMPUTER TO FORM TRACKS FROM SURVEILLANCE INFORMATION?

6. We need to remind ourselves of the answers to such fundamental questions in
..order to keep sight of our objectives. The author sees three basic reasons.

a. To provide a tactical picture

A display of the tracks of all vehicles observed by sensors showing present
positions, courses and speeds etc is essential for the deployment of a ship and
its weapons. The computer enables rapid use to be made of sensor information
thereby ensuring that the picture is accurate and up to data.

b. For use in processes such as threat evaluation and weapon assignment.

The computer can forecast future likely positions of tracked vehicles and rapidly
perform necessary calculations to assist operators in the assessment of threats
and in the optimum weapon deployment to deal with them.

c. To provide target information for weapon deployment.

,he computer can be used to generate smooth tracks from noisy information thereby
being able to pass information to a weapon sensor more accurately than information
1crived from a single plot on a display. The computer may also provide continuous
.1 formation obtained by continually increasing the extent of the extrapolation
from its previous best estimate of target position.

The third reason is generally thought to specify the most stringent requirement.
Hlowever, association processes usually demand the most of the tracking.

7. Thus the uses of the computer are basically to provide quick calculations

using input data and to remove the tedium from man's task in tracking, ie taking
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care of most tracks (and possibly new detections), while the man would be able to
concentrate on the overall situation. The man would also need to handle those
situations at which the computer is less capable; such situations would generally
be ones which requite the use of qualitative information for their solutions.

SUMMARY OF PRESENT METIIODS

8. a. The traditional method (known as a-8 txacking) is well documented (for
example see Reference 1-4).

The method is basically as follows: a forecast position of the vehicle being
tracked is calculated, and a fraction of the difference between this forecast
and the observed positions is added to the forecast to give an estimate of
true position at the time of the observation. The assumed velocity is
incremented by a fraction of the difference between observed and forecast
positions, divided by the time between observations. The next forecast
position is then the present estimate of position extrapolated using the

estimated velocity. The process is started by calculating a velocity from the

first two observations, and using this to forecast from the second observed
position.

The equations are thus:

G n F + a (P n-F )
Vn = n_ n (nFn

V V B. (P F
n n-l T n- n

P =G +VT

n+l n n

where:

F = forecast position for nth measurement
n

P n= nth measured position

G = estimated position after nth measurementn

V n= estimate of velocity after nth measurement

T = time interval between measurements

a = position damping factor

1 -- velocity damping factor

b. In most previous real time weapons systems, these equations have been

applied in a Cartesian co-ordinate system, one set of equations being used for

,.ach dimension. It may be seen that, for positional smoothing, if a = 0, all

sensor information is ignored whercas if a = I, there is no smoothing of

)Ositional intormation. Similarly a = 0 causes sensor information to be

ignored in the estimation of velocity whereas a>1 will cause overcorroction

(ie noise amplification, with the ability to predict inside turns). Simpson

(Reference 1) calculated the limits of stability in terms of a and 3, the

result of which is that a and 3 should normall," be' c..eC1L 0 and 1.
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Th(- simplest possible system is one in which a and $ are fixed constants, and
the theory of such systems has been studied by Simpson. For such systems,
Bordner and Benedict showed that, for a manoeuvre expressible as a ramp input
of position, the relationship between a and a which optimises noise response
for a given manoeuvre and also manoeuvre response for a given noise is:-

a2

Li 2-a

c. Constant parameter systems suffer from the incompatible demands that good
smoothing requires heavy damping (ie small values of a and B), while good
response to manoeuvres requires light damping (ie a and B large). Light
damping and therefore poor noise response, can lead to low probabilities of
weapon sensor acquisition and plot-to-track association problems. Heavy
damping, implying poor manoeuvre response, can cause sudden loss of tracks
(sometimes termed track death) through failure to associate with subsequent
plots.

d. These limitations led some workers to opt for variable parameter systems
where a and B are varied according to the state of the track. Some systems
have been developed wherein a and B were initially selected arbitrarily, and
changed during program development by trial and error, various operational
sets of values being derived for various states of track. Such methods are
adaptive and are usually economical in computer use, both in terms of required
storage and run time, but generally have no theoretically optimum adaptation.

e. More recently, processes have been developed in which a and B are made to
change with time in order to continually compute the least squares line through
the observations. Such approaches assumed that errors are equally distributed
in x and y and had a constant standard deviation. The formulae for changing
a and B in this manner were worked out by Marks (Reference 2). For the
incorporation of the nth measurement:-

a = 2(2n-1)

• 6' '• 3 :(2)
{ • n(n+l)

f. It is clear that, for large n, a and s tend to 0, ie observations will
be increasingly ignored. This suggests that there should be some maximum
value of n. To the best of the author's knowledge, the maximum value used
is generally 7 to 15. Such a method may be made adaptive if a means of
detecting changes in motion is used, ie if turn detection is provided. Then,
if a turn is detected, the values of a and s may be raised simply by lowering
n. Doing this will improve the turn following capability. Another approach
to turn following is to assume the turn is circular, and to try to track round
this. However, this requires that the turn be quickly detected and that turns
generally be of sufficiently long duration.

Sg. As has been previously stated, the preceding methods are fundamentally
Cartesian. There are also methods in which the track data is held as x-, and

co-ordinates, course and speed. Assuming that, for an aircraft the course
is more likely to change than the speed, this method allows speed to be more
heavily damped than course.

h. Magowan (Reference 3) took a fresh look at the subject and produced a
logic which takes account of the usually polar nature of plot noise. This
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automatically allows for the fact that the area of uncertainty round a plot is
a function of range as well as the range and bearing errors. The method stored
track data in range, bearing, course and speed. However, the main diffic;Ilty
of the approach is that the last best estimate of position of a track is
treated as having zero error.
k. More recently still, Clynick and Milner (Reference 4) proposed to

calculate an optimum time constant (ie, in effect an optimum value of n) based
on the target range and derived velocity. This was an attempt to achieve areasonable compromise performance in calculating course and speed over a

* considerable range of operating conditions.

m. The approach followed in this report is based on Kalman filter theory,
which can take the polar nature of plot noise into account and can provide the
exponential weighting in the form proposed in Reference 4. It is not proposed
to derive the Kalman filter equations in this repoit, since this has been done
adequately in References S, 6, 7 and 8. Instead, a "picture" will be given
for a single dimension case.

A SIMPLE APPROACH TO LEAST SQUARES SMOOTHING

9. Before dealing with the Kalman filter, we shall try to introduce the concepts
:* involved in smoothing, and to show why a least squares criterion is used.

a. Let us assume that we have two independent estimates, x' 2 and x2 of the
same variable, with mean square errors (variances) a' and r respectively.
Assuming that the errors have Gaussian distributions then from the first
estimate, the p.d.f. for the probability that the true value is x is:-

= I (x'_-x)
P1 = I exp { - 2a }2a '

Similarly, from the second estimate, the p.d.f. for the probability that the
true value is x is:

P2 = --. exp { -I 2

The joint probability that the true value, from both estimates, is x is p = P1P2
where

1 exp{ (X''x)2_ (x2 -x) 2 1

P 2•,/ exp - 2a' 2r

Now it may be easily shown (see Appendix C) that the product of these iwo
Gnussian distributions is another Gaussian distribution given by

p = constant x exp - (x-R) 2

2ý2

"".here x = (xi r+x 2 a')/(a'+r) (3)

arnd 2 = a'r/(a'+r) (4)

This joint probability is therefore maximised when x = R, while the standard
deviation associated with Rc is ;, which is always less than a' and lr'. The
actual value of the constant in the expression for p does not matter here,
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since we do not want +( know t,.e actual value of p, but rather th- value of .x

which maximises it. (The "constant" in the expression is not strictly a
constant, since it is a function of the a' and r, x' 2 and x2 , but the important
point is that it is not a functi-'i of x which is the quantity of interest.)

b. It is -:c doubt apparent that x' 2 coul' have represented a forecast of x,
and that xg .ould 'lave represented a measurement. if x changes with time, it
is also nec -ary 9 e5 ýimate thL rate of charnge (which we will assume to be
constant).

c. Let us ide". tl,, . t x' 2 iF an estimate baseu on a previous
(estimated) : siticn x t there is an -stimated velocity v1, and that x2
is an observLl 'n. Le; Iosume that x'1 has variance a' (as before) and
that x2 has variance r. w. also assume that R1 has variance a, that v1 has
variance d ane that the covariance between xj and is b. (The covariance
of R1 and v, is defined thus: if an error in x, is 6x, and in V1 is 61v then
the covariance o" ^ and vj is the mean value of all products (6x1 6V1 ). This
is analogous to the variance of a single variable being the mean square error:
the covariance is the me-n value of the product of errors in two variables.)

Appendix C shows that the best estimate of velocity after making the
, measurement x2 may be written:-

S~~v = Vl , (b+td) (x2-x'2)( )
v..2bt+t~d+r

where v, = previous es+imate of velocity

b = covariance of previous position and velocity estimates

a = variance of previous position estimate

t = measurement tine interval

d = variance of previous velocity estimate

and that its variance is given by s2 where:

S2 d (a+r) -b2(6s = a § r(6)
a+2b t+ tzd+r

We may reconf.gure (3) to have the same form as (5) hence:-

a (X2-X, ) (7)a' +r

or, in terms of the a, b, d etc,

(a+2bt+t 2d) (x2 -x' 2 ) (8)
x2 = X12 + a+2bt+tld+r

Hence we may write:-

• 2 = X' 2 +a(X2 -X'2) (9)

V2 = V1 + I (X2-X"2) (10)
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where a a' a+2tb+t 2 d
a'I - a+2tb+tzd+r

ant (b+td)and • +tbtz
a+2tbt~;r

Now, ;2 is the new value of a, and s2 is the ne% value of d. It can readily be
shown that the new value of b is

(b+td) r
a+2bt+t'd+r

d. Initial Conditions

Let us consider two initial measurements x0 and x, taken time t apart. The
best estimate of position is thus xj, and the estimate of velocity is

If there is an error in measurement of xO of 6x0 and one in xI of 6x,, then
the error in estimating velocity is (6x, - 6x 0 )/t.

The variance of this velocity estimate is the mean value of

(_x__-__o)____ (6x,)2  26x.6x, + (6xp)2

t 2 tz

The mean value of Sx26xi = 0 for uncorrelated measurements, hence variance of
v= d = (mean (6xj)• + mean (6xo) 2 )/t 2

-- (ri + ro)/t2 say.

"The covariance of x1 and vj (called b) is the mean value of:

t

which gives 1) =r
t

Thus we may construct a covariance matrix which relates to x, and v, and is:

[a 1 whose elements are the mean values of the elements of

/11 P~[~i 5ýViI

whee r e

a = rl, b E L- and d =rjro
t
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We would have obtained the same result 1y applying Appendix B equation 3 to:

,ro0 Oi -0 1 iX0.
r using the transformation 11
.0 rl v - -

We wish to forecast over a time interval t to calculate a forecast position
x 2 .

We thus use the transformation

Fx?2  1 t 1

1vl " 2 i (11)

We may apply Appendix B equation 3 to calculate the covariance matrix for the

forecast state

:x1 2
This is

V,

!a+2bt+t 2 d b+td
(12)

b+td d

If the variances of measurement error are assumed equal and since

a = rl, b = = d = r and writing G2 r r o

we find that the covariance matrix for

2. t-x'z I s 7,.T21

is:
V1 J i 302 2a2
-hnw co-bn theL t2 I

L

When we combine the forecast x' 2 with the observation x2 , which has variance r
using (5) and (8) we get

3a2 (X -X 2)
v = vi t t(SxKGot)

+ v (x2 -x'p)
2t

i2 = 2 (x2-x2 )
= xtz+ SW z+6

6
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hI'hus, for constant variances of observation of errors, we find, using the
definitions of the two damping factors given by (9) and (10), that ( = 5/6
and iý = 1/2 are theý optimum values for incorporation or the third plot into
the track.

Marks (reference 2), has shown that, for constant errors and time intervals:-

2(2n-1)
n(n+l)

.3 6
n(n+l)

where n is the observation number, the first observation for the track having
n= 1.

In the above example n = 3, which gives a = 5/6 and 8 = 1/2.

Now in (9), a is effectively defined as the ratio:

variance of forecast position
variance of forecast position + variance of observation

If a is less than 0.5 it therefore means that the variance of forecast position
is iess than the va:riance of the observed position. When n = 6, a = 11/21;
",hen n = 7, a•m i3/28. Thus, when n = 7 the forecast is about as accurate as
the measurements. Also, the variance of the smoothed position = ar, which, for
n = 7 gives 13r/28. Thus when n = 7 the variance of the smoothed position is
just less than half the measurement variance, ie the "noise power" has been
hialved.

It is not proposed to go any further with this example, since its purpose was
solely to introduce the basic concepts of tracking, but the illustration serves
to demonstrate the following drawbacks of this simple approach.

c. The example was given for tracking in one dimension only, and assumed that
the time interval between observations was constant. If we wish to track in
more than one dimension, this simple theory can only work if the measurement
errors in all the dimensions are not related in any way (ie are uncorrelated),
in order that the tracking may be separately performed in those dimensions.
Now, radars with auto-extraction equipment have independent errors in range
and bearing. This would constrain tracking to tracking in range and bearing:
"linear forecasting is then not good enough for finite range and bearing rates.
r'he theory is only valid for tracking in x and y when the variances in x and y
can be considered independent and constant. This is so in manual detection
systems which employ Cartesian frames of reference.

It should be remembered that, if variances in range and bearing are constant,
t.ae variances of x and y after transformation from the r&6 to the x~y
.uo--rdinate system will be related and will be functions of r and e (or x
-iand y• and will not, therefore, be constant for a moving target.

Tne Kalman filter, which forms the basis of this tracking study, does not
suffer from the restrictions above: it is a generalised version of the method
etpirically derived and is in matrix form - thereby conveniently handling the
correlations between errors. The Kaiman filter equations were first derived
by Kalman and Bucy, (References 6, 7), but many others ;,ave produced different
derivations from different viewpoints (for example see References 5 and 8).

-8-



10. YKULMN FILTERING

a. In this section, all upper case letters will refer to matrices and
lower case letters to scalars. We will take the ideas already presented
and represent them in a different way as an introduction to the Kalman
filter equations.

Equation (11) states:-

r~

01v LV i

which means that the state of the track which is given by xl and vi is
transformed to another state given by x'2, v, over a time interval t. We
may represent

as X, and hence represent as X'2 •

The matrix wi hich we may call 4 transforms X, to X' 2 .,10 11

We may thus write equation (11) as X' 2 = "XI or, in terms of transition from
state Xk to state X'k4l

X'k+l = Xk' (13)

This expressioai is in effect the equation of motion from which a future state
Xk+1 can be calculated from a past state Xk-

The covariance matrix associated with Xi (or Xk) was given in (5) as

a b'
• I = I ( = Pk0 .

:bd

That associated with X' 2 (or X'k+I) was found in Appendix C as

;a,2bt+t 2 d b+tdl

2= ( = P'k+l).
b+td d,

In fact the covariance matrices are related by the equation:

P1 T
Pk+1 = (P P k T

the superscript T indicating the matrix transpose. This may be checked by

deriving p,,T and comparing with P' 2 .

-9-



Sa+ 2 t +t-d

a was defined by (9) as: a+2bt~td+r , r being the measurement variance
a+b t-d) t

and 3 was defined by (10) as:
a+2bt+t2d+r

The denominator of both of these quantities is the (1,1) element of P' 2 plus r.
We may obtain this (1,1) element of P' 2 by the operation

[l01 OP,2  a+2bt+t 2d.

Hence, if we define a matrix M = [1 0], the denominator for a and a isxT
(MP,! +R), where R is the measurement covariance matrix (which is the same size
as the MPMT product and is a Il matrix in our example).

The numerators for a and S/t are the contents of the first column of P'k+l in
this example, and we may obtain these thus:

MT +2bt+t2dl
'k+l M b+td

Thus P' k+l %T (MPMT+R)f gives a matrix which we shall call Kk÷l

where the first element of Kk+I is a and the second is ý-

Our smoothing equations are:

SXk+l = x' k+l 'k+- Xk+l)

Vk+l = Vk + It (Xk+l - x'k+l)

which is clearly the same as writing:

X -'k+l Kkl (Yk+l -X'kM l

where Y is the matrix of observations, and is Ml for this case.Sk+1

It is more usual to write this as:

X k+1 = '(1 k+l - Kk~l k+l " Yk+ "

The variance of x was found in (4) to be: 2 ra

k+b r+a'

In (12), a', the variance of forecast position, was found to be given by:

a' 2 a+2bt-t 2 d.

Hence we may rewrite (4):

.2 =r(a+2bt+t 2 d)
a+2bt+t 2 d+r

-10-



We may further rewrite this as follows:

(a+2bt+t 2d) 2

S= a+2bt~t 2 d -a+2bt+t
2d+r

Now, MP k+I = [a.2btIt 2 d b+td]

(a+2bt+t 2d) 2

The (1,1) element of Kk+IMP'k+ = a+2bt+t2d+r

Thus it is correct, for the (1,1) term at least, to write:

Pk+l ! PIk+l " Kkl MP k+l

We may now move on to a more formal definition of the Kalman filter.

b. The Kalman filter equations which are derived in References 6-8 may be
written thus:

X'k+l = Ck Xk (14)

Pt ¢k Pk T T (15)
kl k k + Ck k Qk Gk

KK~ PIk~ M Tk PI , MT + Rk~J (16)
X X1 (K+1i (17)

Xk1 k - k lKk (N Xlk+ - Yk+(

P k+l =I Pk+l - K k+1 N\•+1 P'k+1 (18)

where a prime (i) represents a forecast value, a hat () represents a best
estimate of a variable, superscript T is the transpose of a matrix and:

X is the state vector of order nxl

€ is thetransition matrix, nxn, and defines the transition from true
state Xk to true state Xk+l

P is the nxn covariance matrix of the estimate of X (ie P'k+1 is the
covariance matrix for estimate X k+l)

G is nxj matrix representing the effects of j elements of 'plant noise'
sometimes known as process noise on the n elements of the state vector;

Q is a jxj matrix, being the covariance matrix of the plant noise

Y is an mxl vector and has as its elements the measured variables

MI is the (so-called) measurement matrix and is mxn

R is the mxm covariance matrix of the measurements Y

K is a matrix, nxm and essentially contains the damping factors.

-11-



c. Some explanation of these terms

The true state at time tk is X The true state at time tk+1 is

Xk+l k Xk + GkUk

where Uk is a set of random inputs known as plant noise. In essence, the G, U,
Q terms represent h~ow true the equations of motion implied in 1 are, or, for
example, how straight a nominally straight track really is. This noise is
assumed to have zero mean, thus the best forecast is as given in 13. Having
thus mentioned plant noise, we will now ignore it for the purposes of the rest
of tie report, since the main effect is analogous to the time constant concept
in Reference 4 which is not of concern at present, but will be discussed in a
future report. (It may be apparent to the reader that the effects of plant
noise reduce the rates at which variances of successive estimates change.)
Other terms may be used in Kalman filters, these are also ignored for the
purposes of the report.

d. Incorporating a measurement

*When a measurement is made, what is actually observed is some function of the
true state together with noise.

Thus what is observed is:

Yk+l M k+l Xk+l + N k+l (19)

where Xk+1 is true state at t = tk+l1 and Nk+1 is a set of noise components.

This equation then defines Mk+1.

C. Working through the Kalman Equations

As a simple example consider a state vector to represent a position (say x)
and a velocity (say k). Let us consider that x is observable (as Y = x+n) but
k Ls not. Then:

represents is and Y represents a measurement of x, thus Y will be a

lxl matrix which is the true value of x corrupted by noise. In this example
. is obviously a lx2 matrix:

[1 0]

Hence Y = [1 0] + [N]

f. Forecasting

In this simple example we assume linear equations of motion, hence:

x= x + k(At) (At being tk+1-tk)

i1k'2=i -12-



or, in matrix form

[X'iF Ati Y

LO L
Comparison with (14) shows that we have defined 4 to be:

~At]

F1  '11

To simplify matters slightly, we will write t instead of At. This new variable
should strictly be written t but is written as t for obvious reasons.

k,k+l

Let us assume that, at t = tk, Pk is:

b ;

(this matrix is symmetrical since the covariance of x and k equals the
covariance of St and x).

Hence Pk+l

'1 a b: 1 0

10 U b d Lt 1.
L J

;a+2bt+t 2 d b+td:

ib+td d!

Now K is nxm and, as stated earlier Rk+l has one element which we will call

÷[2bt+b2d b+tdMk+l 'k+l Mk+I = I Ol [b+td d [o_

a+2bt+t 2 d.

:a+2bt+t 2d b~td!
K' LoJ [a+2bt+t 2 :1+rk+l -IKk+l l•b+td d k1

a+2tb t2 d

a+2tb+t d+r-k+l

b~td13
La+2tb+t2d+r k+l-



Now, the expression a+t(2b+td) is the variance of the forecast position X'k+l.
If we call this a' then the first element of K is

ak+ 1 k+l

a k+l

atk+l+r k+l

If this is compared with (9) it will oe seen that this is precisely a. It will
also be seen that the estimate of velocity variance in (6) was in fact a
combination of velocity variance and position velocity covariance. It will then
be clear that the second element of Kk+l is the i- defined.

t

g. Smoothing

We can now move on to (17).

Mk+l1 'k+ is simply X'k+l. Thus,

""(a+2bt+t 2d)(x' k+1 - Yk+l)F kl
1 Il

. k~l!a+2bt+tzd+r
(b+td)(x'kl kl

-1 _a+2bt+t 2 d+4rk+l

Similarly, using (18),

FIa+2bt+t 2d 1 -db4t
a+2bt-t 2 d b~td _ a+2bt+t 2 d(r1 0] a+2bt+t 2 d b-tPk~ !bt a+2bt+t2d+r k+lj

P =k+

l b+td d b+td J b+td d
SL J k. .a

To simplify the manipulation, we write

a' = a+t(2b +td), and r = rk+1

then

Xkl = k++ la+ (x'k+l -

tIk+l1 1 (b+td) (xj
L U'+r k+l - Yk+l).

ial b+td a0 [1 0] "a' b+td

ab + d -ar Lb+td d]
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'-6
b+td a'-) 2  a'(b+td)

=b+td d] ,+td) (b+td)2

'r +rJ

a'r (b+td)r
al~r a'+r |

(b+td)r d(a+r)-b2
at+r a'+r

The variance of estimated position at (k+l) may be seen to be exactly that
derived earlier in the single dimension case. Similarly, as mentioned
earlier, the first element of corresponds exactly with the derived
and the second element with _ k+l

t"

h. Initiat~ion of the filter

The next problem to consider is that of starting up the filter. However, the
starting of the filter requites knowledge which may not be available. In
particular when we have received one observation, we need a velocity estimate
and its variance. Let us consider that we have a stream of measurements yi
each of variance r. Thus,

FTo
X 0 assuming zero velocity.

L0

Thus X'1 = at time At.

We know that the variance of yo was r. We assumed that * was zero, thus we
are justified in assigning a large variance to this value. In reality, we
may assume initial velocity components such that the target is approaching.
It should also be possible to use a sensible value for the variance of this
estimate since target speeds are limited.

The covariance between xo and xo is zero since the errors "u them are not
related.

Hence Po [ ] , L being a large number.

thus PF = t
ItL

*.K1 =P iPl+r]

-11
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r+t2L:

tL

Sr+t2Ll

t .1 tL•-;-c

Since L i, large (at present, at any rate)

-tL
" F Y-Y[-Yo]

L t -

which is perfectly sensible.

"N - KMIP' 
1

Lr-t 2Lj tIL
* 2r~t t2L[ 2rjt(r+t2 L -(1 2 rLt2L tL

S2r+t2 L
Lr (rrtrL-ttL Lrt rt

L tL 2tL

';rt2L(2r+t 2 L-c2 r - t2) tL(2r+t2 L-rt 2 L)

2r+t2 L 2r+t 2 L22L rt2 L) rtL 1L
I 2r+t2 L 2r~t2 L

L

rtL 2rL
12-r-+t=L 2r+t2LJ

Nox,, since L is large,

r 1
-"I

r

",he "triance of the position x1 is thus r, and that of estimating il is tr3
both of which are reasonable results, and in keeping with those derived
empirically in (4).
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We can easily show that the covariance terms, ttie in with the empirical
theory by calculating P' 2 and showing that the variance of x' 2 is 50 2 .

P ' 2  P 1 0T Fi r r 'Pr-T

3r,1 t 01

Sr 3r
r 2r i

The filter may also be started by observing the first two plots and calculating
initial velocity, varian( s etc.

j. Equivalence of Kalman and a-8

Thus the Kalman filter has been shown to be equivalent to the least squares
a8 tracker provided that:

(1) all measurements have equal variance

(2) data rate is constant

(3) there is no plant noise (ie the track really does follow the
assumed equations of moti'n).

(4) an error in one co-ordinate of the track's position does not affect
the other co-ordinate.

Hence the least squares aS tracker is a restricted Kalman filter.

Restrictions (1) and (2) become important when information is derived from
two or more unsynchronised sensors of different accuracies.

Restriction (3) is difficult to deal with in the aa tracker. Item (4) is
perhaps the most significant restriction. If a track is stored as range,
range rate, bearing and bearing rate, then the errors between range and
bearing will not be related (unless data is input manually from a device
driven in Cartesian manner). If the track is represented in Cartesian
co-ordinates and their rates, the errors are related unless data is input
from a Cartesian device.

It is shown in Appendix A that the Kalman filter, the least squares aa tracker
and linear regression give the same results, for special conditions mentioned
above. When plant noise is absent, the Kalman filter represents
multi-dimensional linear regression worked out on a continuous basis.

k. Choice of equation of motion

As has been mentioned previously, radar information is available as a range
and bearing, with the errors in the two measurements unrelated. At first

-17-
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sight, it may appear reasonable to attempt to store tracks as range, range
rate, bearing and bearing rate, ie to use:

r k+1 1 t o o rk

S0 0 1 rk

k+lk
e 'k+l 0 1 t 0

8 k+l 0 0o 1 ek

as X'k+l = ýXk'

Such a representation attempts to fit a spiral through all plots which is not
generally valid particularly for targets which pass by the origin. However,
this error is not significant for crossing at zero or large ranges. Crossing
at zero range, is of course, radial. If a system is only interested in point
defence, such a method may be adequate. The effect may be reduced by use of
the time constant giving exponential decay referred to a.arlier. In the
simple a3 system this would be derived (approximately) by fixing a maximum
value of n. In the Kalman filter, introduction of plant noise terms has a
similar effect. Such a term must be used anyway, otherwise the filter will
eventually ignore plots since the variances c2 plots would become very large
compared with forecast variances.

One would expect that use of a second order state vector would improve matters
for straight tracks. However, one would expect that it would still tend to
pull tracks into the origin, exhibit less damping than the first order rO
tracker and have better response to manoeuvres.

For such a system the equation X'1 = Xk would expand into:-
- t2 k ol rk

2t

,I t t o o o r2 k

k+1 0 k

0r~ 0 1 0 0 0 rk

4 Ii

1'-': o o o 1 Ik* V" k*l 2

o k.. o 0 0 0 o
Sk~i 31 0

I _ --

However, this is still not a perfect representation of a straight track and it
has the demerits of complication and the large variances associated with
estimates of i and 6k• We therefore need to transform measurements from r and
: to x and y. This is simple enough:
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x = r sin 0

y = r cos 0 (0 being interpreted in the nautical sense).

The covariance matrix of r and 0 is

rr 0

k =

It is shown in Appendix D that the covariance matrix for x, y is

2 Srrsin2+r22 b00Ces' . ( 2 rr-r 2 02 o0 )SineCose

R k(x~y)=L~rro

(a2r- r2C20)SineCose a2 COS 2e+r 2a 2 Sin2 .
L r B rr Be

provided that a -- sino 0B, which is true for all practical radars.

Hence, all measurements are transformed to Cartesians, the R matrix being
transformed as above. The system is then:

X k+l 1 t o 0 1xk
X'k+1~ 1 0 X
X k+l o 1 o o t k

L'k+lJ o o o 1 k
k• Yk

Y k+l 0 0 0ok

11. TESTING RESULTS

a. Each of these three types has been programmed on a computer for
comparative testing. A simple simulation has been built round each of the
trackers: the simulation generates tracks which consist of two straight
parts, the parameters for these parts being provided as input data. Noise
is superimposed on each generated plot, the noise being added as range and
bearing errors. The noise is produced by a noise generator which produces
Gaussian distributed pseudo-random noise (See Appendices E, F and G).

The trackers were tested with various sets of input data. The variances of
errors in range and bearing, and the data rate were all kept constant for any
one run. This was not due to any limitations of the trackers, but purely in
order that the whole system could be set to work quickly. Also, keeping
things simple in this manner made it easier to predict what ought to happen.

Some tracks with turns included were generated: it was not expected that
performance should be good on turns, since no turn detection or turn handling
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facilities have been built in. Overshoot on turns was shown by running some
of the Zracks without noise (the R matrices were not zeroed as the filter
would ignore measurements after the first).

b. The results obtained were very much as expected, as may be seen from Figs.
1-IS. Both types of polar tracker perform tolerably well with tracks which
turn towards the origin, but poor performance against crossing targets. If
the distance units are considered as Km and time units seconds, 1 distance
unit per time unit corresponds to approx Mach 3. One would expect the rO
trackers to have poor performance for targets which turn away. Thus thej polar trackers tend to assume all tracks are going to approach the origin,
whereas the Cartesian trackers do not.

The standard deviations of the plot noise were 0.4 distance units ior range
measurements, and 0.4* in bearing.

Figure 1 shows the response of the three trackers to a noise free track which
consists of two straight parts. All three trackers are satisfactory on the
initial radial portion - this is as it should be. The responses to the turn
may be clearly seen. If the track had continued beyond the point at which it
stepped, the xy tracker would have eventually rejoined it. The purpose of
this graph is to show the effect of continually increasing damping in the
event of actual motion being significantly different from assumed motion.
How to deal with this situation (turn handling) will be dealt with in a later
report.

Figures 2-4 show the performances of the trackers against a short noisy track
"which crosses at 10 distance units. It is clearly seen that the first order
polar tracker pulls the track towards the origin - because it is trying to
fit the best spiral through all of the points. This effect is less noticeable
with the second order polar tracker (Figure 3), and absent with the first
order Cartesian Tracker (Figure 4).

ligures 5-15 all have the same speed, 1 distance unit/time unit. Figures 5, 6,
7 and 8 show the relative performances against a straight track with a crossing
distance of 30 distance units. The first order r8 tracker (Figure 6 and 7) is
clearly poor "n that the incorrect equation of motion introduces systematic
errors. The 2!nd order rO tracker is "reasonable" in removing these systematic
errors until the plot at y = 26.3, ie to plot number 19 (see Figure 8).
However, the xy tracker (Figure 5) is considerably better, both in terms of
position and velocity: after plot 6, the xy tracker always has velocity
estimates within ± 0.02 of the true values. When the 2nd order polar tracker
applies enough damping to do this, the non-linear assumed equations of motion
start to "pull" the track systematically to one sid-.

Figures 9-15 depict a similar track to that in 5-8, except that the crossing
distance has been reduced to 15 distance units. The performance of the xy
traicker (Figure 9) is quite reasonable, particularly when Figures 10 and 11
are considered. These two graphs show plotted and smoothed errors together
iith their -'s and 3c's. The curves of o and 3a for the smoothed errors are
approximate, in some later runs the true values will be output during the runs.
The first order polar tracker does not perform adequately for very long

K.gures 12-13). The second order polar tracker performs adequately up to
Jrjund plot 11.

It may be apparent that limiting the number of plots used in the two rO based
trackers would have improved performance. In particular, if the track depicted
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in Figur', 11 had a time constant of 11 plots it would probably have maint.ained
gooi contact. This concept will be pursued further in a later report. It
is a;so worth rmentioning that, at the closest point of approach, the equations
of motion assumed in polar trackers are valid since motion is circumferential
at this point. Of course the above section demonstrates the importance of
selecting the correct equations of motion.

12. USE OF ThE METHOD USING DAiFERENT MEASURED QUANTITIES

a. We may now make a further point about the usefulness of the Kalman
filter in application such as "Bearing only". Consider that we have, in

addition to normal radars, a sensor which only provides, say, bearing
information. In a polar tracker, we may use this information readily. It
may be recalled that M was defined in (19).

For a polar tracker, the state vector, X, may be:

r

; the measured variables may be:

6

Y= ;with covariance R = r 0C20

Hence Mr6 may be seen to be:

'1 o o ol

o o 1 o0

If we only measure bearing, (19) indicates that M0 would be:

[o o 1 01

to give

[o 0 1 0] r

Thie covariance matrix applicable to y , RO6 is 02 ; a Ixl matrix.

b. It may now appear difficult to incorporate this single variable measure-
menit in a track represented in Cartesians. However, the fact that we were
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able to make a bearing meas-rement at all conveys the information that the range
of the target was somewher, ,etween 0 and the maximum range of the sensor.
Thus it would not be unreat ;nable to assign i value of range to the bearing
measurement, this range bei:ig, say, one half maximum range of some function of
signal strength. The R matrix associated with the "measurement" would contain
the bearing variance and a variance for range. If the range were better than
just a guess, then o2r could be made reasonable. This would not prejudice the
assumption made in Appendix B, since the approximation for this transformation
is only effective in bearing.

13. CONCLUSIONS

a. The Kalman filter approach provides the basis for an effective ani unified
generalised tracking system. Cartesian representation of tracks appea-s
advantageous at this stage. However, when the effects of plant noise are
considered, it would appear that this is best applied in a track-oriented
manner. Alternatively the knowledge of foxecast accuracy could be used in
deciding whether or not a turn had occurred - in which case the filter could
be reset in some fashion.

b. It has been shown that a system which takes information from various
sensors with differing accuracies can be produced and that not all sensors
need provide the same sort of iaformation.

c. It is perhaps worth noting that the tracking process can only be as
good as the data it receives. Thus it is dependent on the accuracy and rate
of input. The amount of use it can make of this information depends on how
much of the old information the target being tracked allows us to use. If the
targets being followed may only turn slowly, we may use a long time constant
to match this, the long time constant giving a high variance reduction ratio
ie high gain in precis.on. "Lively" targets only allow a short time constant
which in turn gives a low gain. Consequently, high gain for lively targets
requires a higher data rate (ie we make time units smaller). The method
should allow us to put figures to such arguments.

d. A long study of the subject of tracking by Bordner and Benedict resulted in
them concluding "to improve tracking, improve radars". The approach adopted
for this study should provide the basis for quantitative statements on the
improvements that new radars could bring about, eg with regard to data rate,
accuracy, elevation information, Doppler information etc.

14. FUTURE WORK

No tracking process is of any value without a means of associating extracted
plots with tracks. Reference 9 discusses some ideas and methods for such a
process. Any such process requires knowledge of accuracies of forecasts
and moasi'trments - these will be available if a Kalman filter is used for
the tr,.r.Yng process.

Current worx on tracking is directed at studying the problems of turn
han'"i-ng, and tien, having a solid base, consideration will be given to the
b,.nefits and uses of elevation and Doppler information in a generalised
manner.
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APPENDIX A

EQUIVALENCE OF KALMAN FILTER, LEAST SQUARES a$ TRACKERS AND LINEAR
REGRESSION? FOR SINGLE DIMENSION CONSTANT ERROR COKSTANT

DATA RATE CONDITIONS

Assume measurements are available as follows:

Position Time

Z1 0

Z2 t

Z3 2t

Z4 3t

All measurements have variance 02

1. Kalman estimation: 4 is , M is [1 o]
jo IL 'A

rX'n rl t, xW =nj 
nL-1

Initially, let x, = zj, ii = o, velocity variance large

Hence X2 is F Z2

Z2 -Z1

t

|a 32 22

r0 t
= C02 2c,,2

F 2Z2 -Z

F 52 30y2

30Y2 2a2
t t

K3
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rI
I S Z2 Z I"ZýZ3 + -2 -6

X3 =

(z 3 -zI)

2t
a.

[a2 a216 tP3= 2 02T

-17

X1'4= y(4z3+z2-2z, 1

,(z 3-zl)

2t

PI 4= K4
K, J

22Lna ersinEt2imation
10

1--L(3Z4+Z3-Z2-3)

2. Linear Regression Estimation

Wce assume observations are related thus:

x = mt+c

1n
We thus wish to minimise s = 1 (z. -mt.c)2

hi=l 1
ýs ;s

We do this by finding -, ,ýp setting both to zero and solving for m and c.

nZzt - EzEtWe get m= nZt 2 - (Zt)2

Zt2Zz - 7tzrt
C = ngt 2 - (EFt) 2

ilence, in this example, n = 4 and z's and times are as given, (ie o, t, 2t etc)

1

M-= -1-(3Z4+zS-z2-3zi)

10

- (7Z*4z2+Z3 -2z--�-25-



Position at time 3t is:
•: = 1 1 ,
14 -lt (3Z 4+Z3 -Z2 -3zl). 3t + •- (7z 1+4Z 2 +Z3 -2z 4 )

11

= To- (7Z 4 +4Z 3+Z2 -2z,)

and its velocity is m.

3. Least squares as tracker

Now, a = 2(2n-1) and 6 6
n(n+l) n(n+l)

Thus X2 = z2 -z 1
t

and X2 = Z2

X 3 = Z2 +(Z 2 -Z l )

^5 1

X3 = X' 3 + -t(z 3 -x' 3 ) = (-Z1 +2z2 +Sz3 )

1 1I = + (z-')= (z+

4 =3 + :k3 .t = !(-2z 1 +z2+4z 3 )

*4 X '4 + -'(%4-X'4)= -(-2Zl+Z2+4z3+7z4)

3 1
and R4 = k3 + I-t (z4-X 4 ) = t (-3z-z 2 +z3+3z 4)

Hence all three methods give the same results, which is not surprising since they
all originate from the same criterion. Proofs which demonstrate a difference
between linear regression and least squares a8 tracking must therefore contain an
error of some sort.
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APPENDIX B

TRANSFORMATION OF VECTORS AND THEIR COVARIANCES

The problem discussed here is the one which arises when we transform a given
vector in one plane to another plane. We wish to find how the covariance matrix
which applies to the original vector is transformed.

Consider that we have a set of n variables, which we group into a vector Y,
together with a covariance matrix RY which is nxn and contains the covariance of
the variables in Y. We will transform Y to a new vector X and we now wish to find
the contents of a matrix R X, which is nyn and contains the covariances applicable
to X.

yl

Y XI

Yn

)yI i 712 r in

r r ryn, I yn2 ynn

r r . . rxll x12 xln

R =X

r r . . rX I xn2 xnn

By definition,

r = olimrffth m I (Xiq - x :i)(kxk)

or, inl increments from the mean values X i and x--k

r o, 6X 6X

xi limk '1 .q kx (B.1) ,
qIl_,_
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From the total derivative theorem,

•x. •x. •x.1 3. 1
dxi =- dy1 + - dY2 + . + - dYn

x [ i dj(B.2)

j=l.• dyj

Now, if the derivatives of Y are linear over the intervals 6- = ss

s = 1,2,3 . . n, we may use (B.1) and (B.2) to give:

1 n a 8x. n 3 k

= lim ~1 I XX 6y

limm- m q=l j=1 s=l Yj aYs jq Ysq

n n axi. xk m
ý I __L._ limm+• 1 6yjq 6s)

j~ sla>'. ay' kl¶ m~c~ jq 6sq)j=l s=l 3 Ys q=1

These last two steps are valid for these summations.

The last part (ie following lim m•) in the expression for rxik is the definition of

the covariance of y. and y hence:

n n ax " axk
r xik = I i k yjs (B.3)

rxk j=l s-l y -- s

We have therefore established the relationship between R , the covariance matrix of
Y, and R, the covariance matrix of X.

This may be written in matrix form as:-

R =ARATx y
;X.

where A..
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APPENDIX C

ESTIMATION OF MOST PROBABLE POSITION

The joint probability density function is given by (see text 9 a.)

(x x)2  (X2-X)2

P=2r a" exp 2a' 2r

1
=2'-r a'" exp (J) dJ

The value of x, x which maximises p is given by the solution of - 0
dx 0

lence dJ x' 2 -X X2 -Xd--n"e + -=0
dx r

x= rx'2+a'x2
a'+r

We also wish to know the variance of X^ which we call a2

r a'Let h - ka'+r a+r

Then x = hx' 2 + kx2

Let us assume an error of 6x' 2 in x' 2 and 6x2 in x2.

Then the error in x, Si = h.6x' 2 + k.Sx2

The variance of x is defined as the mean value of (Sx) 2 over many samples.

Thus a2 = mean (.4(6X' 2 ) 2 + 2hk6x' 2 6x 2 + k2 (6x 2 ) 2 ).

S We assume that measurement errors are uncorrelated, ie that 6x' 2 and 6x2 are
independent; we also assume that they have zero mean. Hence mean (6x' 2 6x2 ) = 0

Thus o 2 = h 2 a' + k2 r

r2a' + r(a') 2  ra'(r+a')
(a' +r) z(r+a') 2

ra'
r+a'
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ESTIMATION OF MOST PROBABLE VELOCITY

The method of estimating velocity is basically the same as that for estimating
position with one important difference. Our two estimates of velocity are:

= X'2-Xi
t

x2-Xl
and V2 = t

It is clear that the two estimates are related since they both include data from
the same point. If we call these estimates v, and v2 respectively, and assume
variances s1

2 and S2 2 and covariances S1 2
2 (these values are calculated in C.2)

then the joint probability density function may be shown to be given by:

V-V (v v) + 2p(v-vl)(v-v2 )

1 { sIS2 SlS2
F 2 SlS2 P2. exp 2(I-p_)

s 2 12

where P -
SlS2

We wish to find the value of v which maximises p ie the value of v to satisfy

di
u- = 0, where J is the argument of the above exponential function.

2(vi-v) 2(v 2 -v+ 2p(2v-v 1 -v2 )
dJ si S22 + 1S2 0
TV-

2 (1-pz)

tence v - s2
2 vI + s 1

2 v 2 - s12
2 (V1 +V2 )

Slz+S222S12 (C. 1)

Now we know that v2  x2-i and v, = x't t

which may be expressed in matrix form as:

t = 1 §1V FX ie

If we consider errors in each element of X, we may construct a matrix out of them:

~x2

zx2
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Now the variance in xj is the mean value over many samples of (Sij)2, and so on
for x' 2 and x2 . The covariance of x1 and x' 2 is the mean over many samples, of

(6i1.6x' 2 ). We may represent these variances and covariances in a covariance
matrix, which contains the mean values of the elements in:

6x' 2 6

6X2J

ie the covariance matrix elements are the mean values of the elements in:

[(6R02 6il6tX'2  6i16x2 1
6xt 26il (6x' 2 )2  6x' 26X2

SX2 6il 6X 2 6x' 2  (6X 2 ) 2

Now the covariance matrix associated with X is

[a p 0]

p a' o

o o r i

where a is the variance of x1, r is the variance of x2 , p is the covariance of x1
and x' 2 , and a' is the variance of x' 2 . Note that "che covarimaces associated with
x2 are zero, since we assume that errors in this measurement are not related in any
way to errors in previous measurements.

Ile may apply (B.3) of Appendix B to calculate the covariance matrix of V, which is:

rS 1
2  s21 aa' -2p at

12 t--

k12 2~ 4a- a+rJ
S1 S~ 2 t t (C.2)

* We may apply a similar approach to estimate p ie

given x' 2 = [1 t] X

V I
with covariance for 'x a b!F of

v1. lb di

and applying (B.3) we get, for covariance of

ix'2!:

-31-

1'A



a 17 a a+bIt

p aa+bt a+2bt+t'-d

Thus P = a+bt

We may thus combine this result with (C.2) and (C.1) to give:

(x' 2 -Xl) (a+r+bt) + (x2 -xl) (t 2 d+tb)
V = t(a+2bt+t2d+r)

Now a+r+bt 1 (t 2 d4bt)

t(a+2bt+t~d+r) = t t(a+2bt+t2 d+r)

We may thus rearrange (C.2) to give

V + (bt+t2d) (X2-x'2)
t t(a+2bt+t 2d+r)

= V + (b+td)(x 2 -x' 2 ) (C.3)
a+2bt+t 2d+r

v1 being the previous estimate of velocity.

We now move on to calculate the variance of v which we will call s2.

Now, V = V1 + ý- (X2 -X 2 ).

Thus we are performing the transformation:

t 1] F X2

In order to find the variance of v, we need to determine the covariance matrix
associated with

X2 I.

X2 J

We assume that x2 has variance r, and is uncorrelated with x2' and v, (ie that
errors in measurement x2 are not related to errors in forecast and velocity
estimates). Thus all that remains to be estimated is the covariance matrix for

SX2'7,

-V1
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We may derive this by applying (B.3) to the transformation:

AI

Xt= X+V .t
2 1 1

V I- V 1vi=l I

÷a,2bt+t2d 
b+tdl

giving the covariance matrix

+td dJ

rx21 Fr o o
Hence the covariance matrix ffor , is 'o a÷2bt+t~d b~td

2 0 b+td d
v

Thus we may use (B.3) to calculate s2:

2 2 r 82 (b

=2 -+ - (a+2bt+t 2 d) + d - (b+td)

8o = (b+td)

Nowa+2bt+t 2 d+r (as shown earlier)

32 =b+td)2[ria+2bt+t2d-2(a+2bt+t 2 d+r)] + d

(a+2bt~t
2 d+r) 2

d(a+2bt+tad+r) 2 - (b+td)2 (a÷2bt+t2 d+r)

(a+2bt+t 2 der)2

22

I

2 ad+dr-b
2

a+2bt+tl-d+r "'

S2 = d(a~r)-b
2

a+2bt+t 2 d+r
33



Summary

The best estimate of position has bcn shown to be given by:

rx' + a'x
= 2 2al+r

and its variance is:

ra'
r+a'

where a' = a+2bt+t 2 d

The best estimate of velocity is given by:

(b+td)(x - x ')
-:V = V + - -

I a+2bt+t 2 d+r

and its variance is

•.s2 d(a+r) ,b2

a+2bt+t 2 d+r-
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APPENDIX D

APPLICATION OF RESULTS IN APPENDIX B IN POLAR TO CARTESIAN TRANSFORMATION

Consider the following polar to Cartesian transformation (ie from r, 8 to x, y)

x r sin e

) r Cos 8

(Note that 0 is interpreted in the nautical sense ie 0 is a bearing which increases
in a clockwise direction from the positive y axis.)

The covariance matrix associated with r and 8 is assumed to be:

:Orr 0

ie r and e are independently variable
•0 02 '

(as would be the case when r and 8 are determined from a radar auto-detection
system).

We may relate the problem to the argument in Appendix B by considering:

jX
X as

Y

r
Y as

6

The transformation of covariances given by (B.3) involved a condition of
linearity, this holds if sin 8o8 6o0 which is valid for all radars the author
is aware of.

We will denote the covariance matrix applicable to X as:

(2 o2
xx xy

Rx =

xy yyl

Hence, by substitution into (B.3)
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3X 02 • (since a2 2 0 )
xx = 3 02rr + -0 0Be s 2re Or

= J2rr SiT12  + r2 a2ee COS2.3

U2  ~a2 3X2-2 +2Xa
y yx Dr 3r rr + e 36~ 00

= (C2rr-r 2a 2oe) sine cosO

C2  a 2 2r + 200
YY k ! orr Be

U2rr cos 2 e + r 2 o2 e, sinze

rr0

C4 sin2e+r2 02 68cos 20 (G2rrr2U266)sin~cos ;
Hence Rx = y rr

(a 2rr-r 2 2aO)sinOcosO O2 rrCOS2O + r 2 2 eosin10
I..

isi.• is the covariance matrix for the transformed vector X which we set out to
f'ind.

It is interesting to note that in general, the co-ordinates after the trans-
formation (x and y) are not independent. The singular cases where they are
independent occur for 0 = 0 , 90 , 180 , ... or for r = arr/aeo. These special cases
are easily explained as follows: the equal probability contours for bivariate
(;Gtassian distributions are ellipses: if the axes lie in the directions of the axes
of the frame of reference, then the covariance terms are zero: hence the independence
of x and y errors for 0 = 00, 900 etc. When r = Orr/a0O, these ellipses reduce to
* circlez which may be considered as limiting ellipses whose major and minor axes
lie along the axes of the reference frame.

It is worth pointing out fiat the covariance matrix R could have been derived by
considering the geometry if the ellipse and the rotation required after trans-
formation. However, this is complicated, particularly for a transformation from one
3-D frame to another, when it is not just a simple translation or rotation of axes.
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KrkPC 1:ETATEP 1: '-TATE) 'r

T RA 9 S ? SECP$4 I ,P4 I To/t A) 4'

~ATR IXv1LL TCPo P4 ITo Pp 4j4v4)
14A TR IXM JL TC Pl I, PsP r4v 4v )

-M T R 1 (.4 LL T( M s~ PsM P2v4v 4,)

viATRI Xilvt IL T(,C oi PM ToM PM To 2' p ipP
1A TP Ifxl\D rc MP-1 To Ro MPMTo P pP) T

-AT.PIKI4V(MPMTvFRPjr-jRCvv2)

"MIATRIXSUR(PrEr,/-,6,PRED~o,2,1) 4'

MAT;'[X-4 L TCK pPRF/- oC11 RPEC.TI 1] \1, /i, Pp I

/C'iviMF'\JT` PREn/? IS' ýJ.W CM*X-Z)4cK 4'r

*v-IATRIX'z'IR('K(.r]RPFrTt.J\JXA,1) c'

M A TP MIIjLT(K #M PsK.*-, Pp,4 2v 4) It
-1 A TRI X S IItRPoKM Pt Pi- 4) T-

'CJMME\JT' FIR A 4 \/APTARLE STATE kPCT)R( STATF' A),
A\Jr) A TWi VARIARLF" YIEASURFME.4T V/FrT-'RiRMFA~ctI:F.=P)
)( IS -64c1,Z IS 2*l, P IS A&A,6 M IqPA F HI IS h4vz,K IS 41cP

'E\JiP' TRArK 'r

MTC3v1)=ý1TCh,1)i'T(4pP)fl 4

PqI C I, j. O=11F 11 'FO /J 'qE'4 It 'ELSE' 40'I

FTATE=4 .4EASURE=2

.rJ!IE\'T/ STATP VFrTJR IS 4-VARIA L,'IEASIIREME'\JT VFf!TJP

)cli=REAr)c~fn) -- YP=PAD(Pfl)
)(i IPrAr~cpnf)F DTRACn)I

(>I&JLE iý)DTR-DPO -AJ'EJFY-TPACn
r-A%(;f7=PArlCPfl, 4' FI'JT'H=REAI(f)Cp)I ETT-Fr(0

%,At.'RRFaflcPf) T' kaPT-4FTA=EAfD(pf) q, JLP'(=READC~fl)

ft 47



( PAGF 5)

WRI TET( I0 Or(C C l -) '11ST * ",JPDFP'* 'IKeLMA1A -'C 'C') ')
I JTI ATE TRACK: -'(F ' iJI SF 'EO'1 I '1THENJI
'BEGI.'JI

G;ALIS Si AV CRV-J T 4F , VA RP)
rAAOSSI 4C TETAJJI SFP VARNFETA)

-'F'40' 'E~LSE-, R'JISE=T4ETAJ'1JI-ShO
C!)PYZC 1,1 )=S RTV((o(flo~yplcyo).R,~ji SE IF
CiJPYZ(29 1)=ARCTA'cX0/YOv).THF.TA,'Jd11E '

CARTC-J'9V I

C-JPYRC1,I)=RC1j,I)=VARR

T=PELTAT T
EX=XO4-XDtJT*DELTATc
IwY=YO+YDJT*DELTAT T
'IF "'JI SE 'E')'1 THEJ SURST 4:
,,I F IN-) I S E IEO '0 l 7H EA~
'9EGI 1 1

I C I,I) =S 0R T CEX *EX + . Y * WY)
e C Pr I )= PCTA'J (EX / WY)

TI-vF.=T

XC4,1)=(C/-2,I)-rCJP'Y.C2,1))/DELTAT
PcI, I)=RC 1,1) :,
PCI#2)=PC?,1)=HCI.1)/DELTAT
Pca.1?=CPcIDIl)+r.]PYr-CII))/cr)ELTAT*rFLTAT) T
PC3*3)=R(P.,P) '
PC P394) =PC /is3) =PCP.-P) / EL TA T
PC4v4D) = RCRPs2) + 0 PY R(Pp P) ) / ( DLTA T*DEL TA T)

'tCJM"1E'T' TRACK 15 Ic \JW [VITTIATED

CARTC.JýV

D MPC-3CjUTZs, P., I )

'J P T=P* DEL TT 4TEP rFL TAT /(WTTL /C.J (;F /PJ I

EY=Yfl4r)'JT*T e

/IF 19 1 I5F 'Fr)/I '*Tq-I\J SL'PST
'IF '-4ISE'EO0j1'TqfEVJ

'C')jMMF.'47' VULISE ADPErNWIN \/ARTA\NICE t.ARR A41) T-49,NTA
IVJ T4 TW) PRECE~DINJG STATEI"MF>TS



(PAGE f)

P41 C 1,2) =P241(C3.A) =D'L TA T
TPArKPvAP414[,NMT*P,,Xe.R)
CAR TC.J.'A
DOIJPC 13LITX. , *1 )

TIME=T

YO=Yfl.YDiT*T[ME v
Xf]T=<DJT4C~4AJ(3E 'JF X(PiT It
y~TY!JT*Y)TCHA4AbLE: 3P YDT T~

WYY04'nXPT*T

`1 F '.'J*.3 SE 'EQ11 'INE4 'SLIRSTc

ZC (11)= SORT( FX* FK(4WY* WY)
Z(2,1)=ARrTA'J(EX/('Y)

'C*JMt-49:>JT' -JiISF A!)D)FP. WITN VAPP A4Jfl VAPT14FTA 11J TH4E
Tw Pt7FCEPI.j(' STATFiv)FVTS e.

P-iT(1,?)=PNT(C3&4)=f)ELTAT r

4 APTCJIJV I,

* 'IFNJr)' c'
iE'J f)'
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*1ODU'JI1 0/PRINT
* IQ DU4IT20/ READ
*XEO
*STO RAGE/ 40 0O/ 15O000

* CHAIN I
*ALGOIL

'BEGI-N INTEGER' IPJvMEASUREsSTATEvt3L.DXvF$
'ARRAY' )(1: 6. 1: 1),ZCJ:2-, 1:1),OLDZCI:2, 1: I),,
O]LDESTL( 1:2j,1:1U, PHIC1: 6, 1:6). PC 6.1:6),

RC: 2. 1:2) tiLDR(1: 2. 1: 2),OLDESTR( 1:#P 1: 2),1
M,-CI:2, 1:6*lMTC1:6j,1:2),jtUTX1: 4s,1: 1)j,'JLTZ( 1:2,1:1)
'REAL' To TIME, DEL TAT, CHAN GE, FIN I SH, EX, xDG To CHAN GE O)F XDI TP
WY,Yr,'JTsCHANGE OF YDWT, XO.YOPVARR, VARTHETAP DEL TATSQ.
R'J'JISE. T4ETANOISE. Ul, U2.VA 1.44CEsNOI SE

'CLOMMENT' X,/L AND tJLDZ ARE COLUMN VECTLORS.
R AND JLOR ARE 2*2 MEASUREMENT COJVARIANCE MATRICES.
K IS A 6*2 MATRIX* AND IS ESSENTIALLY T14E DAMPING FAC1'JR.

'IIS THE MEASUR~EMENT MATRIX ANDI 2* 6.
MT !S THE TRANSPOSE JF Mo
TRACK 1\1 R. THETA. RDOT. THETADOT. RDIJUBLEDJiT THIETADJLIPLED2JT,
GENERATED IVJ XvY WITH CONSTANT DATA RATE.
MANOELIVRE AT TIME CHAN GE. FINIS4 AT TIME FINISH.
KALMAN' FILTER TRACKER WITHOUT PLANT NOJISE TERMS

'PROCEDURF' TRA\ISPUSE(Pii, PHI T&MI,N) -T
'INTESEP' MI.EN
ý'ARRAYI PHI.P-FilT F
'REGIN I:\TEGERI I.J 5

'ARRAY' COJPYPH-ICI:MI,1:'J) F
.'F']R'11~ 'STFP'! 'UNTIL /MlIN 'I
IN R 'J= I'STEP '1 'LIJ TIL 'N 'DQO'
CJPYPHICfsJ)=PHf(IvJ) T-
'Cl3MME"JT` PHI CoPIED SO THAT TRANSPOSE CAN RE ASSIGNED

T-3 'JRIGI'JAL ;MAYRIXOMi'LY POSSIBLE FOP SOtJARE MATRICES)
'i It = I 'STEP I 'IU4TIL M I 'DO'I
"~tR'.J=1 ' STEP'Il ILN'TIL '\N 'DI '

'E.'J[D'TRA\NSPJSE

-PR'JCEPLRE' MATRIXINVCAv.RMI) 5
'ARRAY'1 APB 'A

ý'INTEGER' MI
;8EGI.\ REAL' DET !t
'COMMEN'T' TO INVERT A 2*2 MATRIX $~

'IF /Mf -'-\E'12 ̀ TlN REGIN'I
-WRI TFT(Ifno '(C ICI)'-M NE 2'1)'1)

I'GOJ791 S TO P T

RtClv2)=(-A(l#2)lDET)

BC 2. 2) -AC 2s 1) DET)

STOIP: /EAD'1 MATRIXINV



(PA GE 2)

'*PRLOCEDURE' %MATRIXADD(A*BvCvMIs'4)
'*ARRAY'* A. B#C
'INTEGER' MIvN
;'COMME'JT' 7E SUMI OF THE MATRICES IS STORED IN4 TE ARRAY
C.A.8.PC ARE MI*N S
'BEGIN INTEGER' IvJjiP T*

'FOR'I1=1 'STEP'1 'IUNTIL 'MI 'lDO -
'R)R'IJ=I 'ISTEP') ;IUNTIL 'N 'D3O'

'END' MATRIXADD S

'PROCEDURE' M1ATRIXSUR(AvB,-CvMIvuN)
'ARRAY' lt'jBC f-
,ItNTEGE:R'* MIP4 N
ICIJMMENT NHE DIFFERENE 'IF THE TWO MATRICES IS STORED IN TNE

ARRAY Co *AvRvC ARE MIl4-'
'BEGIN INTEGER' I&J !t

'FtJR'I11 'ISTEPI1 'UVTIL 'MI 'DO'

'PiR'*J't ;*STEP~l1 YINTIL N. N 'DO

'END' MATRIXSUB S

"PROCEDURE' MATRIXMLLT(Av8B.C. M[,N. P) 5
ý'ARRAY' As.B.C T
ý'INTEGER' MIol.N. T,
'CO1MZVJT*' NE PR'JDUCT OF THE TWJ ARRAYS IS STJRED IN 71E

ARRAY C- TL0 M'WLTIPLY BY A SCALAR THE SECOND
MATRIX MUST HAVE THE VALUE (IF THE SCALAR AS ITS DIA031AL
WITH N1E REST O3F THE ELEMENTS AS -i-OUeiT3* A IS M*,NP IS N*ePs
C IS M*P. COPIES OF INPUT ARRAYS ARE MADE iN ORDER
THAT ANJ ARRAY MAY BE USED a3TH AS AlJ INPUT AND
OUTPUT PARAMETER T

'REGIN INTEGER' IasJ,(
`ARRAY' COPYA(IIC1M1, t)*03BC):.'v,17P)
IFJR-111 'STEP' 11LXJTIL eil '*DO)'

0lPYA(Ij.J)=ACI.,J)
'F-JR'1) 'STEP,')'L)'JT[L '," *DO '

'1FJR'J=1 'STEP-It IUJ! P'D2'
CJPYB(I,J)BUMI~J)

r FJR'11~ 'STEP' 'II~ IL 1.v,ei I DO I
,FojR '.J= I 'STEP / 'L( 71 I[L 'P'IW)I

'EYJO' MAATPIXMLLT F



C(PA~. 1 3)

'PROCEDUIRE/ DLI"P(A*MlI,'J) T
'ARRAY' A
-'IViTEGER-' MiDN T
ý'BEGI'J I.NWiEGE:R'I.J

I F13R 11 1 'STEP I 'UV TI L 1,111I'DiJ I

'F -J STEP' 'IIMTI L IN I~'DPD' I)A ,.)

WRI TEC I Op LAYLIJ JT( 'C '5-14 DDDDD. fDI )A ,J

qJEWLINC10,4) 5:
'*E.ND'l DUMP F

'PRUCEDUIRE' CONVERT F'
'BEGIN'I

OJUTXC P I, 1)= 2#1X 4v1))X( 1.9 1)~ 1iX 4,1)) 5a1

* COJSCXC 4j,1) ) 'R
0J(JTX 3p,1)=X( I vI)*r-J S( XC4s, I)
*JITX( 4v 1 )=X( Po I )*CIJS( XC 4a 1 ) )-X( 1s 9 )*X( 5. 1)
*l SINCXC 4p1) ) T
1-3UTZ( to I )=Zt 1, 1 )*SI-'4(Z( 2v 1) )F

IEND' CIJNVERT c

',REAL PfO1CEDURE', RAND3M ýF
ý'BEGIN IJTEGER'"CALC I
5'C3M10E'T' 'JLDX( MUST 8E DECLARED GLOBALLY

JLDX=255*t3LDX F
rALC=F)JTIER(t3LDX/131071)
J1LDX=IJLDX-13107j*CALC S

RA.'JD0,M='LDX/131071

'E-4D' RANWM.l

'PROCEDURE' GAUSSIANC 'JJil ,"Ep VARTANCE) ýc
'REAL' NJISEPIVARIANCE $
'REGIM REAL/ TW.JPI 1:

T~oJPI=6.23IB 9
UI =RAN D311 5z
U2=RAN DiM !c
NdtISEtSORTC-2-*VARIAN4CE*LNCUI))*C'JSCTW3PI*U2)

'END'1 GAUSSIAN F~

/PROCEDURE' SURSTITUTE !c
'BEGIN COMMENT' TO SET Z MATRIX Wt4EN 114JSE ADDED

THETA\JL-ISE=R\JtISE=0 !
LiGA USS I A'JCRN I SE, VA RR)T

GAUSSIANC 7HETANJI SE,-VAR11fETA)
ZC I., I)=SORT( EX*EX+VWY*WY)+R40'ISE5
ZC 2j, 1) ARCTAN4C EX.'W&Y) + PETANOJI SE T

'EVD' SUBSTITUTE S
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( PACE 4)

ERR')EDRC'JV1 MEASUrKCMASREiASTATE),CHIJRRETIIJ.'XjCI:TAT,11P)

KMPAT(1:STAT'E,1STATE).MC:TAE1MASR) ISTATE1MESUE f
;BGNRRA Y'PiECPI MPCITMEASTTE. :STATE)p NI(lSA~- %SAF

ERA]ROVCIXMLLT(RPLI1:,X MESUR)AT 03EDCI-WI STATE, 1) s
KMC1:ATAI~UTE. 1:PH TP STATE)# PM(!STATE* I:ESTATE) a C1 TT*:MAUEF MA~TRAXML1SEC PHI* PHI Ps STATEs' STATE) TTE

MATRIXMLLT(M.PP1j.MPIMEASUEDSTATE.91 STAT)
MvATRIXMLLTCPMHITsPsTSTATEs, STATE.- SATUE)

MATPIXMt.LT(Mi, PiT.,MPMT*VEA.SUREP STATEPMEASURE)
MATR~XADDCIIPM*T, RMPMTMEASUREaMEASLIRE) T-
MATRIX IN VCMPMTS ERRJ RC'J Vp MEASURE) It
i1ATRIXMLLTC PMTv ERRJRC'J VsK STATEvMEASURE.,MEASURE) T
01ATRIXMULT(Mo X.9PREDOv MEASUREv STATES 1) T
MATRIX SUR( PREV'Z. Z* PREDIP MEASURE* I) 'P
MATRIXMLLT(KPREDZ,.CLdRRECTIQJJ, STATE.MEASUREP 1) !P

'tOMMENT1 PREDZ IS NOJW CM*X-Z)*K $

M ATRI XSUB( X j CO RRECT7 IONJ ,Xs STA TEP I ) 5
MATRIlXMUL T(Ks MP,-KMPP STATE& MEASURE# STATE) S
MATRIX SUB( P.9KMPv Ps STATE. STATE) S

'Ct]MMEN4T/ FOR A 6 VARIABLE STATE VECTL3RCSTATE=6)..
AND A TWJ VARIABLE MEASUREMENT VECIJ RC MEA SURE= ).,
X IS 6*1,-Z IS 2*1j, P IS 6*6s, M IS 2*6v PHI IS 6*bK IS 6*2 4

/E'JD' TRACK T-

'CJMME,4T-' SETTING OJF MEASUREMENT MATRIX 5

,F'JR'.J1 'STEP1'1 -%r'TIL '6'*DJ.

'C'iMMENT1 SETTING TRAN4SITIONAL MATRIX AND STATE C'.JAVARIANOF
MATRIX T
'F'JR'*I1 'STEP/I UJ'TIL /6'ID] I
'IFQ'ifJi -ISTEP'1 'lUiJTIL'16'DJ -1
"RE GIN'

-PHI( lsJ)='IF I'EG)-J 'THEN 11 'ELSE-'O T
P(Io.J)0 lz

* 'END 1)
STATE=6 F %%EASURE29

101MiMENT' STATE VECTOJR IS 6- VARIABLE* MEASUREMEV T VEC11IR
fS 2-VARIABLE T

XO=READC2O) T YO=READ(20) T
XWJT=REAP'20) le Y!).3TREAD(PO) T
rHA'JGE OF XDJT=RFAD(9fl) c CHANGE 1JF YDJT=REAr)(PO)
rCHAAGE=READC20) FI'ISH=REAbC9O) It PELTAT-READ(PCI) 1ý
VARR=READ(20) 5 VART4 ETA=READ( 20) T ]LtPX@REAflC20)
rnELTATSCI=DELTAT*nELTAT It NISE=READ(?O)
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WRI TET 10, f( C') -2ND'4 -eiRDER-* 4K ALM AN' -( C,) ') F
1I"4 TIATE TRACK: -'I F' NLJdISE 'EQ' I NE'EJ'

/BEGIN'
GALISSIAN(R'JUISE*VARR) T

GAI.SSsIAN( 714TANIJI SE* VARTH ETA) T
'IENJfl 'ELSE,' RNIJISE=THETA--NJISE=0 !P

)JLDESTZ(1,1l=SQRTCXO*XO4YO*YO)+RtNOIlSE F
*JL DESTZ(2., 1 =ARCTANCX 0/Y0)T4 hETAN'JISE
C N VERT
DUMP(']JUTZ. 2, 1) S
F=LAYOLITC -'C 'S-N' DDDD. DODD')'I) 'F
WRITE( I D0,LAYOUT( ''S-,N D-ODD 00) 1) aX n)
NEWL.N1NC0,p) !t-
WRI TEC 10* L.AYOJUTC 'C 'S-1 D.- DOD'1) 1) jYQ)
14EWL 111CIlop4) T -

EX=X0+ XWtT* DEL TAT T
WY=Y O4YDO T*DEL TAT it
'IF'N'JilI SE I'E' 1 'H EM'
;,1EGIN'

GAIJSS!4AN C R'JOI SEm VARR) !P
GAIJSSI ANC THETA'iOI SE., VARTH ETA) 5

'EVOD' 'ELSE-' R'JOISE=THETA~JiJISE=O
'JLDZ(l, I)=SORT( EX*EX+WY*WY)+R'JOISE I

* JLDZC2pl)=ARCTANCEX/WY)+74ETAN~JISE T,
EX=EX.XD.JT*DELTAT 5
WY=WY4YDJT*DELTAT T

R(5 T ')=ILDR~j~LDELLSTRCl11)=VARR T

RC 2j,2)=1JLDRC 2j,2)OQLDESTRC P, ?)= VARTH ETA S
RCI.92)=R(2.1)=I)LDRCI.,2)=CJLDR(2,1l)=OILDESTRCI,2i='JLDESTP(P,,1)0 If

INITIATI1JN:X( 1. )=/C 1j1) T
XC2,1)C(3*ZCl,1)-4*J]LfZC1,1)4-LJLDESTZC1,1l))/(2*DELTAT) TZ

xc~,l)=Z(2.1) IS
XC5,1)=C3*Ž(C2u1)-4*dJLDZC2,1-)4LJLDESTZC2,I))/CP*DE1.TAT) S
XC6s1)=(t)LDESTZC2,-1)-2Ic.JLD/-C2.1)+Z(2,1v,)/DELTATSO

J='II F'i'E0 11'N 4EN I I'ELSE'-2 IP
P(i*I)=R(JpJ) 'F -

* P(L.,I+I)=PCI+li)=3gcRCJ.J)/CDELTAT*2) T-
PCI.I+-)=P(142j,l)R(Jj,J)'DELTATSQ !t
PCI+lL+1)=Ci]LDESTRCJv,j)+16*t]LDRCJJ)..9*RC.Jj,j))/jC C* DELTA TSO)
C(142.*I+1)PCI+1,142)=CJLDESTR(JJ)+8*LJLDRCJj,J)

+3*RC,.JP) )/(2*DF.LTATS'o*DELTAT) S
PCI'2. I+2)=CJLrDESTRCJJ)+4*tOLDR(JJ)+R(,j,J))/

(DEL TATSG'*DELTATSO) T,
'END'

CO C'~VERT T,
DIY~iPCIIUTX*4#1) !t
r)UMP( J3UTZ* 2.-1) 5S

"CriMMENT' TRACK IS NOJW INITIATED: TAKES 3 PL'JTS
TO] INITIATE WITH- A 2ND) 'RDER TRACKER



(PAG'E 6)

GBIERATIJ'J: I'JR IT--3* DEL TAT'STEP'IDEL TAT /LN TIL IC'A'JC-E']'I
'REGIN I

EX=XO+XtD)T*T $
WY=YO+YDlJT*T S
SUBSTITUTE S-
PHICI,2)=PHI(2*3)=PNI(4s5)=PHI(5.6)=DELTAT F
PHICl.,3)=PHI(4,6)=DELTATSQ/2 1:
TRACK( 2j,6j,PHI-iMPMT# PX*ZR) $
CON VERT S

* DUPC'JUTXp4j,l) 5
DUMVP( JiUTZ,,2j, 1) 5

* ~TIME=T

)XO=XD+XD]T*TIME T,
YO=YD+YDOT*TliME !r
XD~JT=XDOT+CHAVGE OF XD'JT

* YDGT=YDJT+ClKANGE 'IF YD)T T.
FINISH=FINISH-TIME F
'M R -IT= DEL TAT 'STEP 'DEL TAT 'WN TIL 'FIN IS '4,D0I
'BEGfNNI

EX=XO+XDJT*T 5:
WY=YD4YDtJT*T 5
SU8STITUTE
PHI( lP)=PHI(2v3)=PHIC 4j,5)=PHI(5p 6)=DELTAT
P'-II(13)=PHI(4j6)=DELTATSO/2 T
TRACK( 2v6,6PH1,MMT* Ps Xv ZoR) T,
CON JVERT F.
DUMP(OIUTX.,4#1) 5
DLRMP(tJUT~s2j,1) 5

'END'I



RESPONSE TO A TURN WITH NOISE FREE DATA

* TRUE POSITION, VELOCITY
. POSITION OR VELOCITY FROM IST ORDER R-6 TRACKER

0 POSITION OR VELOCITY FROM 2b0,ORDER R-3 TRACKER
X POSITION OR VELOCITY FROM X-Y TRACKER

DATA INTERVALS 5 TIME UNITS

e.0-

80 - T

I a ,+ -9 1NI Ia , , !,S

PLOT NUMBER
+

60-

¥ 41.

% %

50-0

05

P40 Ii

PLOT NUMBER

START U14ITS /TIME UNIT

to x ý o ,57A TR.

--ASW. . D T . , (. 0,. P• ••, ... +,D G N



ORDER KALMAN (R,o,R 1,) X-o, Y-0. d.u./ t.u.

--------- INPUT bATA IDA'A INTERVAL =S TIME UNITS

SMO1OTHED OUTPUT SPEED = 0.1 IU/TU

CROSSING WISTAWCE - 10

-04

START

-02
I

/ -'01

TRUE VALUE
OF i(

-'02.

u -0'2.0-

-0'lb-

Y -0-14-

TRUE VALUE
OF-0O

-00'O8

____________________-0.04•

) Z a 4 S 6 ' B 10 11

X, Dl-TANLE. LINITS PLOT NUMBER

AS.W.E. DATE.20.4•IzG, TR.cR. No.



SECOND ORDER POLAR KALMAN FILTER 3

INPUT POSITIONS CROQSING, D!STANCE =10
--- x--- - 'SMOOTNED POSITIONS DATA, INTERVAL , 5 TIME UNITS

-02-

"0 -_TRUE VALUE

OF

-04-

START
S-'0 "

-. 08-

N -'10

- ° I I I I 1 i I I

3 4 S 6 "7 8 9 10 II

PLOT NUMBER

I-x

7.
-. 21

z

S- ' -

-"

4-I

TRUE VALUE

1 -IOF Y

8 9 104 5 6 - 8 ) 10 11

XY, DISTA.NCE UNITS PLOT NUMBEh

59
A.S.W.E. DATE.iq+.f.'. TR.cd lW4 CH. , APR DRG" No.



"XY '.<A'vAN "'RACX-'R (IRST ORDER)

NhP AT'!\
X 3 LT?'~jT 3

CRO~SSNCýNSTA.NZE[ ml
OATA INTERVAL S~ TiMC. LNO!E

s5TARV ,k (TRUE VALUE

PLOT No.-~

Y x

'C0

x 
6

5--- )T 1 R5 -0;44,,a R o



FIRST 'jlDER CARTESIAN TRACKER

CROSSNG DISTAiNCE = 30 .0"
A'TJ, INiTERVAL = 3 TIME UNITS1

-- i--- INPUT I

-X- SMOOTHED oo4-

TRUE x .

START
X .00 -

INCREASING TIME -..

70CRA6N --04-006-

6Go- -,08-, 4i,' ii 62
PLOT No-o-

>

o -1.046

-!-o•-

'--!

I' TRUE Y
30- -o.W-

-0-06- X

zo- x -0 ,94.-

X

x -0.90-o
x l

|a -

• . " -0 "8 8 -
/

04' t l ,b k. '•, i e'o b ' 26 4'
930 B IPLOT No-..-



FIRST ORDER POLAR KALMAN b
CR0SSING OISTANGE = 30
DATA INTERVAL 3 TIME UNITS

INPUT
- -*-SMOOTHED

80- START

"70-

61Ž>
S0- ! •

40-4

30-

20-

o- -I-',

25 i6 2e •9 30



FIRST ORDER RI KALMAN 7

o -.- TRUE VALUE OF X - -I-TRUEVAE OF

-o-6-'.- -0.*7

-. s- -o..6

-0,5-

' I I I I llI I' I Ii i I I I I I I I I I

2.34-5678 1 0 a 14. 15I, Zi ZZ z4 ?-.6 ?34.5& I 10 1Z 1.4. lb 18 O It E4 -

PLOT NUMBE.R PLOT NUMBER

SAME CONOITIONS AS FOR FIGURE 6

63A.S.W.E. DATE 1••.z TR.. DRG No.



ZND O IDLR RO KALMAN TRACKER

CROSSINC, r3STANCE c 30
bATA INTERVAL 3- 3 TIME. UNITS

---- INPUT 
TRU

"o-X-- 1TEI IXX . TRUE.
X-SMOOTHED j/VALUE OF

,TART

70 -"

60 /

i gib li 14 is ig to it i43 PLOT N6.

4-O - l.a

30 ~xY

"j' ".-TRUE VALUE

-0.9.

Zia 4 1 101 4~j~i&*
PLOrT No.

.30 31
x
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C cROSSING 61STANCE x 15 XY KALMAN TRACKER 9
DATA INTERVAL - 3 TIME UNITS

- - -INPUT

-X S••OOTHE-

"06 
X

"04-

START

x" TRUE VALUE

74 .-- --x

-'04

160 -
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. . rn, FIG. 9 AND THEIR A PRIORI STANDARD DEVNS.

KEY

x % SMOOTHED ERROR
,= PLOT ERROR

.6 -1

.4 ~3. STANDARD DEVNJ
FOR SMOOTHED ERRORS.

-X / STANDARD DEVN.

o0- o x FOR SMOOTH-ED
X...~ -I - ERRORS.

-. 4-.00

STANDARD DEVN- FOR PLOTS.

/ 3A~STANDARD OEV~l FOR PLOTS.

149

I 2 -3 4 5 6 7 8 9 1 0 l 1 1 Q 3 14 5 lb 1 1 7 18 19 2 0 21 2 Z 3 2 £N 2 b 6C
PLOT UMEll

A. SýWE. DAT E 317,.42- TR. C.G.4 . RG No..



SY-ERRORS FROM FIG.9 AND THEIR A PRIORI STANDARD DEVIATIONS

1.0-1 '| •KEY

: 5MOOTHED ERROR

• PLOT ERROR

.4 .. 5

SSTANDARD DEVIATION
FOR PLOT5

STANDARb DEVIATION
FOR SMOOTHED ERRORS

• I /
xI

:) O I

"-0

/ ,

- P. 3 4 01 t 31 51 11 1 02 Z2 4Z

i/

_.• I/

!•PLOT NUMBER 6

A-SW~f. AT f-411



1 ORDER RO KALMAN TRACKER

-- "0-INPUT CROSSING1 DISTANCE - 16

S-X - SMOOTHED OIATh INTERVAL = 3 TIME UNITS

START

70-

60-

Y

30.20"

./ ~/ I

10..I I

0

SDAT�9A

A .WAE. DATEA4**-TRA4W'CH APP ORG No 8



FIRST ORDER RO KALMAN TRACKER

-t13r .
-I. -- TRUE VALUE OF Y

y

. . . . . . . v 
.. .

•, 10 PLOT NtUMBE,.R

0"1A

0 - ..•t-*-- TRUIE VALUE Of

-0-1

x -0,3-

?- 3 4 5 6 110 111 112 115 1i 5 115 17 1i8 19-40i g 3L4 b
PLOT NUMBER--- b 9

,, • A.,S.W.E. DATE .%,%•T.•"'CH APR DG o ,



SECOND ORDER Re KALMAN TRACKER Q 4

------- INPUT CROSSING DISTAP'4CE -15
5M00THE.O D3ATA INTERVAL 3 TIME UNITS

so

START

40-

30~

40 •

/
/

10
I

x 0
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SECOND ORDER RO KALMAN TRACKER U15

0"I

0"0- TUE VALUE OF

-10-01l

'--TRUE VALUE OF Y

0.3

-0"9- -- "-
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